A Unified Proteochemometric Model for Prediction of Inhibition of Cytochrome P450 Isoforms

نویسندگان

  • Maris Lapins
  • Apilak Worachartcheewan
  • Ola Spjuth
  • Valentin Georgiev
  • Virapong Prachayasittikul
  • Chanin Nantasenamat
  • Jarl E. S. Wikberg
چکیده

A unified proteochemometric (PCM) model for the prediction of the ability of drug-like chemicals to inhibit five major drug metabolizing CYP isoforms (i.e. CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4) was created and made publicly available under the Bioclipse Decision Support open source system at www.cyp450model.org. In regards to the proteochemometric modeling we represented the chemical compounds by molecular signature descriptors and the CYP-isoforms by alignment-independent description of composition and transition of amino acid properties of their protein primary sequences. The entire training dataset contained 63 391 interactions and the best PCM model was obtained using signature descriptors of height 1, 2 and 3 and inducing the model with a support vector machine. The model showed excellent predictive ability with internal AUC = 0.923 and an external AUC = 0.940, as evaluated on a large external dataset. The advantage of PCM models is their extensibility making it possible to extend our model for new CYP isoforms and polymorphic CYP forms. A key benefit of PCM is that all proteins are confined in one single model, which makes it generally more stable and predictive as compared with single target models. The inclusion of the model in Bioclipse Decision Support makes it possible to make virtual instantaneous predictions (∼100 ms per prediction) while interactively drawing or modifying chemical structures in the Bioclipse chemical structure editor.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Artificial neural network cascade identifies multi-P450 inhibitors in natural compounds

Substantial evidence has shown that most exogenous substances are metabolized by multiple cytochrome P450 (P450) enzymes instead of by merely one P450 isoform. Thus, multi-P450 inhibition leads to greater drug-drug interaction risk than specific P450 inhibition. Herein, we innovatively established an artificial neural network cascade (NNC) model composed of 23 cascaded networks in a ladder-like...

متن کامل

In vitro inhibitory activities of the extract of Hibiscus sabdariffa L. (family Malvaceae) on selected cytochrome P450 isoforms.

Literature is scanty on the interaction potential of Hibiscus sabdariffa L., plant extract with other drugs and the affected targets. This study was conducted to investigate the cytochrome P450 (CYP) isoforms that are inhibited by the extract of Hibiscus sabdariffa L. in vitro. The inhibition towards the major drug metabolizing CYP isoforms by the plant extract were estimated in human liver mic...

متن کامل

Linear Interaction Energy Based Prediction of Cytochrome P450 1A2 Binding Affinities with Reliability Estimation

Prediction of human Cytochrome P450 (CYP) binding affinities of small ligands, i.e., substrates and inhibitors, represents an important task for predicting drug-drug interactions. A quantitative assessment of the ligand binding affinity towards different CYPs can provide an estimate of inhibitory activity or an indication of isoforms prone to interact with the substrate of inhibitors. However, ...

متن کامل

In Silico Prediction of Cytochrome P450-Drug Interaction: QSARs for CYP3A4 and CYP2C9

Cytochromes P450 (CYP) are the main actors in the oxidation of xenobiotics and play a crucial role in drug safety, persistence, bioactivation, and drug-drug/food-drug interaction. This work aims to develop Quantitative Structure-Activity Relationship (QSAR) models to predict the drug interaction with two of the most important CYP isoforms, namely 2C9 and 3A4. The presented models are calibrated...

متن کامل

Cloning and gene expression of cytochrome P450 gene from Alcanivorax borkumensis Bacterium

Alcanivorax borkumensis is a marine bacterium that has ability to grow on limited substrates that mainly is alkanes. The ability to use wide range of hydrocarbons is advantage of this bacterium to other marine community bacteria. A. borkumensis have two genetic systems for alkane biodegradation. The First system is alkane hydroxylase (alk-B1and alk-B2) and the second system is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013